题面

给定一个非空的整数数组,返回其中出现频率前 k 高的元素。(力扣后来加了一句:你可以按 任意顺序 返回答案。我们先假设没有这句。)

示例 1:

  • 输入: nums = [1,1,1,2,2,3], k = 2
  • 输出: [1,2]

示例 2:

  • 输入: nums = [1], k = 1
  • 输出: [1]

提示:

  • 你可以假设给定的 k 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。
  • 你的算法的时间复杂度必须优于 $O(n \log n)$ , n 是数组的大小。
  • 题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的。
  • 你可以按任意顺序返回答案。

思路 小顶堆,时间O(n log k),空间O(n)

C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
public:
// 小顶堆
class mycomparison {
public:
bool operator() (const pair<int, int>& lhs, const pair<int, int>& rhs) {
return lhs.second > rhs.second;
}
};
vector<int> topKFrequent(vector<int>& nums, int k) {
// 要统计元素出现频率
unordered_map<int, int> map; // map<nums[i], 对应出现的次数>
for (int i = 0; i < nums.size(); i++)
map[nums[i]]++;

// 对频率排序
// 定义一个小顶堆,大小为k
priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pri_que;

// 用固定大小为k的小顶堆,扫描所有频率的数值
for (unordered_map<int, int>::iterator it = map.begin(); it != map.end(); it++) {
pri_que.push(*it);
if (pri_que.size() > k) // 如果堆的大小大于了k,则队列弹出,保证堆的大小一直为k
pri_que.pop();
}
}

// 找出前k个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出到数组
vector<int> result(k);
for (int i = k - 1; i >= 0; i--) {
result[i] = pri_que.top().first;
pri_que.pop();
}
return result;